Discovery of Several Novel Targets that Enhance β-Carotene Production in Saccharomyces cerevisiae
نویسندگان
چکیده
β-Carotene is the precursor of vitamin A, and also exhibits multiple pharmaceutical functions by itself. In comparison to chemical synthesis, the production of β-carotene in microbes by metabolic engineering strategy is relatively inexpensive. Identifying genes enhancing β-carotene production in microbes is important for engineering a strain of producing higher yields of β-carotene. Most of previous efforts in identifying the gene targets have focused on the isoprenoid pathway where the β-carotene biosynthesis belongs. However, due to the complex interactions between metabolic fluxes, seemingly irrelevant genes that are outside the isoprenoid pathway might also affect β-carotene biosynthesis. To this end, here we provided an example that several novel gene targets, which are outside the isoprenoid pathway, have improving effects on β-carotene synthesis in yeast cells, when they were over-expressed. Among these targets, the class E protein of the vacuolar protein-sorting pathway (Did2) led to the highest improvement in β-carotene yields, which was 2.1-fold to that of the corresponding control. This improvement was further explained by the observation that the overexpression of the DID2 gene generally boosted the transcriptions of β-carotene pathway genes. The mechanism by which the other targets improve the production of β-carotene is discussed.
منابع مشابه
Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation
A comparative metabolomic analysis was conducted on recombinant Saccharomyces cerevisiae strain producing β-carotene and the parent strain cultivated with glucose as carbon source using gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-mass spectrometry (HPLC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based appro...
متن کاملCharacterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملProduction of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor
In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...
متن کاملIdentification and Evaluation of Novel Drug Targets against the Human Fungal Pathogen Aspergillus fumigatus with Elaboration on the Possible Role of RNA-Binding Protein
Bakground: Aspergillus fumigatus is an airborne opportunistic fungal pathogen that can cause fatal infections in immunocompromised patients. Although the current anti-fungal therapies are relatively efficient, some issues such as drug toxicity, drug interactions, and the emergence of drug-resistant fungi have promoted the intense research toward finding the novel drug targets. Methods: In searc...
متن کاملSimultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Saccharomyces Cerevisiae by Plackett-Burman and Box-Behnken Design
Selenium (Se) as a vital trace element has many biological activities such as anti-inflammation and anti-oxidation. Selenomethionine as an organic selenium plays a vital role in the response to oxidative stress. At present, Saccharomyces cerevisiae is one of the best microorganisms that has the ability to accumulate selenium. Production of Seleno-yeast was done by growing Saccharomyces cerevisi...
متن کامل